MATLAB bvp4c函数 常微…

Matlab基础 专栏收录该内容
59 篇文章 0 订阅
1. bvp4c:

sol = bvp4c(odefun,bcfun,solinit)

sol = bvp4c(odefun,bcfun,solinit,options)

sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...)

sol返回如下值

sol.x   bvp4c选择的网格

sol.y   在网格点sol.x的 y(x)的接近值

sol.yp 在网格点sol.x的 y'(x)的接近值

sol.parameters 未知参数的值

sol.solver   'bvp4c'

2.odefun 为微分方程

dydx = odefun(x,y)
dydx = odefun(x,y,p1,p2,...)
dydx = odefun(x,y,parameters)
dydx = odefun(x,y,parameters,p1,p2,...)

parameters 为未知参数向量,p1和p2...为已知参数向量

dydx为列向量

3. bcfun 计算边界条件的残留值bc(   y(a),y(b)   ),输出列向量

res = bcfun(ya,yb)
res = bcfun(ya,yb,p1,p2,...)
res = bcfun(ya,yb,parameters)
res = bcfun(ya,yb,parameters,p1,p2,...)

4. solinit

solinit的结构如下:

x   初始网格的节点(相当于自变量的节点),边界条件满足a=solinit.x(1) 和 b=solint.x(end)

y   解的初始假设,solinit.y(:,i) 为自变量solinit.x(i)对应的解的估计值

parameters 可选,未知参数的初始估计向量,对于存在未知参数的情况,必须提供

sol.y(1,1).............. sol.y(1,i)............. sol.y(1,end)

...

sol.y(m,1).............. sol.y(m,i)............. sol.y(m,end)

sol.x(1)   ................sol.x(i)   .................sol.x(end)

solinit的赋值语句为bvpinit,语法如下

solinit = bvpinit(x,v)
solinit = bvpinit(x,v,parameters)
solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(sol,[anew bnew],parameters)

x为初始网格向量,对于边界区间[a,b]需满足 x(1)=a, x(end)=b, 一般情况下可用 x=linspace(a,b,10)

v为解的估计,可以是一个向量,也可以是一个函数

v为向量的情况,v(i)代表的就是 y(i,:),也就是不管自变量为多少y(i)都是这个值,向量的维数等于因变量个数

v为函数的情况,对于给定一个网格,函数必须返回一个向量y(1),y(2),y(3)...y(m)

y=guess(x) 代表的是 y(:,j)=guess( x(j) )

solinit = bvpinit(sol,[anew bnew])

由[a,b]上的解sol,得到[anew,bnew]的解的初始估计,so either anew <= a < b <= bnew or anew >= a > b >= bnew

  5.deval 评估 自变量=xint时候的解

sxinit= deval_r(sol.xint)

6. options的设置 bvpset语句

options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts'name1',value1,...)
options = bvpset(oldopts,newopts)

name               value

RelTol             正标量   默认为1e-3   相对精度

AbsTol             正标量 默认为1e-6   绝对精度

Vectorized       on或者off   将ode函数F([x1 x2 ...],[y1 y2 ...]),写成[F(x1,y1) F(x2,y2) ...]. 的形式,能减少函数评估的次数,降低运行时间

SingularTerm   矩阵     方程的奇异项, 如 y'=Sy/x + f(x,y,p)   x=[0,b] ,则设置常数矩阵S

FJacobian       函数、矩阵或元胞数组   提供odefun的解析偏导数 对于y'=f(x,y),则提供f对y的偏导数,若偏导数都为常数项,则用元胞数组的形式给出;若有未知参数,还需计算对未知参数的偏导数

BCJacobian     函数、元胞数组     提供边界函数bcfun的解析偏导数 bc(ya,yb)=0 则计算bc对ya,yb 的偏导数,若有未知参数p还需计算未知参数的偏导数:[DBCDYA,DBCDYB,DBCDP] = BCJAC(YA,YB,P)

Nmax               正整数     网格的最大值

Stats               on 或者off   显示计算过程的统计数据

 

  算法原理:

bvp4c is a finite difference code that implements the three-stage Lobatto IIIa formula. This is a collocation formula and the collocation polynomial provides a C1-continuous solution that is fourth order accurate uniformly in [a,b]. Mesh selection and error control are based on the residual of the continuous solution.
  • 4
    点赞
  • 1
    评论
  • 5
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

matlab中的微分方程-matlab中的微分方程.doc 1510 matlab中的微分方程 第1节&nbsp;&nbsp;Matlab能够处理什么样的微分方程? Matlab提供了解决包括解微分方程在内的各种类型问题的函数: 1. 常规微分方程(ODEs)的初始值问题 初值问题是用MATLAB ODE求解器解决的最普遍的问题。初始值问题最典型的是对非刚性度(?nonstiff)问题应用ODE45,对刚性度(?stiff)问题采用ODE15S。(对于stiffness的解释,请参照&ldquo;什么是Stiffness&rdquo;一节。) 2. 微分-代数方程(DAEs)的初值问题 在那些守恒定律规定一些变量之间满足常数关系领域经常遇到这类问题。Matlab 可以用ODE15S 或者 ODE23T解决索引(index)为1的DAEs。(对于索引的解释,请参阅&ldquo;DAEs与他们的索引&rdquo;一章。) 3. 边界值问题(BVPs) 这种通常要求微分方程在两边都具有特殊的条件组成。尽管他们通常不象IVPs那样经常遇到,但是他们也是工程应用中比较常见的问题。可以利用函数BVP4C来解决这类问题。 4. 时延微分方程(DDEs) 这类微分方程包含了独立变量的延迟。他们在生物与化学模型这类大量的应用中遇到,可以通过DDE23来解决这类问题。 5. 偏微分方程(PDEs) 采用PDEPE可以解决一维时空的抛物面与椭圆方程的初值、边界值的问题。而那些对更加多的一般的偏微分方程感兴趣的可以利用PDE工具箱。 更多的matlab的综合应用技术的信息请参阅Solution8314。 更多的有关matlab采用的各种求解器的算法的信息请查看下面的URLs: ● ODE 函数 ● BVP 函数 ● DDE 函数 ● PDE 函数 第2节 可以从什么地方获得更多的指导与附加信息? &nbsp; &nbsp;可以从MATLAB Center、网站的新闻组、文件交换点可以获得一系列资料,可以进一步解释MATLAB解决各种方程(ODE,DAE,BVP,DDE)的求解器的算法和使用。你可以下载各种方程的文章与手册,他们通常带有大量的实例。 &nbsp;&nbsp;可以从 matlab自带的帮助文件的 Mathematics|Differential Equations下找到使用指导。 &nbsp;&nbsp;Cleve Moler的《Numerical Computing with MATLAB》的第七章详细讨论了OEDs的解法,并附带有大量的实例与简单的问题练习。 &nbsp;&nbsp; 第3节 对ODE求解器的语法存在有些什么变化? 在MATLAB6.5(R13)中应用ODE求解器求解的首选语法是: [t,y]=odesolver(odefun,tspan,y0,options,parameter1,parameter2,&hellip;,parameterN); odesolver 是你采用的求解器,例如ODE45或者ODE15S。odefun是微分方程的定义函数,所以odefun定义独立参数(典型的是时间t)的导数y&lsquo; 以及y和其他的参数。在MATLAB6.5(R13)中,推荐使用函数句柄作为odefun。 例如,ode45(@xdot,tspan,y0),而不是用 ode45(&#39;xdot&#39;,tspan,y0)。 请看采用函数句柄的好处的文档: 采用函数句柄传递你定义MATLAB求解器计算的量、例如大规模矩阵或者Jacobian模式的函数。 如果你喜好采用字符串儿传递你的函数matlab求解器将回溯匹配。 在老的matlab版本里,通过传递标志来规定求解器的状态和恰当的计算。在MATALB6.0以及其后的版本中,这就没有必要了,可以从matlab自带的文档中发现这个差别。 如果里采用的matlab的ODE求解器的老的语法,你可以看看我们FTP站点上的各种求解器的老的实例: ftp://ftp.mathworks.com/pub/doc/papers/ 前面的站点包含了BVP,DAE与DDE这三个方向的采用老的语法的实例。你可以在下面的站点中找到应用ODE45与ODE23的实例: ftp://ftp.mathworks.com/pub.mathworks/toolbox/matlab/funfun 你可以在MATLAB Center的文件交换站点查看这些例子的更新版本。 第4节&nbsp;&nbsp;如何减小ODE的阶次? 求解一阶ODE的代码是很直接的。然而,二阶或者三阶的ODE不能够直接应用求解。你必须先将高阶的ODE改写成一阶的ODEs系统,使得它可以采用MATLAB ODE求解器。 这是一个如何将二阶微分方程改写成两个一阶微分
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值